Continuum model of epithelial morphogenesis during Caenorhabditis elegans embryonic elongation.

نویسندگان

  • P Ciarletta
  • M Ben Amar
  • M Labouesse
چکیده

The purpose of this work is to provide a biomechanical model to investigate the interplay between cellular structures and the mechanical force distribution during the elongation process of Caenorhabditis elegans embryos. Epithelial morphogenesis drives the elongation process of an ovoid embryo to become a worm-shaped embryo about four times longer and three times thinner. The overall anatomy of the embryo is modelled in the continuum mechanics framework from the structural organization of the subcellular filaments within epithelial cells. The constitutive relationships consider embryonic cells as homogeneous materials with an active behaviour, determined by the non-muscle myosin II molecular motor, and a passive viscoelastic response, related to the directional properties of the filament network inside cells. The axisymmetric elastic solution at equilibrium is derived by means of the incompressibility conditions, the continuity conditions for the overall embryo deformation and the balance principles for the embryonic cells. A particular analytical solution is proposed from a simplified geometry, demonstrating the mechanical role of the microtubule network within epithelial cells in redistributing the stress from a differential contraction of circumferentially oriented actin filaments. The theoretical predictions of the biomechanical model are discussed within the biological scenario proposed through genetic analysis and pharmacological experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

βH-spectrin homolog required for Caenorhabditis elegans morphogenesis

Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than nor...

متن کامل

sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis.

Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than nor...

متن کامل

Squeezing an egg into a worm: C. elegans embryonic morphogenesis.

We review key morphogenetic events that occur during Caenorhabditis elegans (www.wormbase.org/) embryogenesis. Morphogenesis transforms tissues from one shape into another through cell migrations and shape changes, often utilizing highly conserved actin-based contractile systems. Three major morphogenetic events occur during C. elegans embryogenesis: (1) dorsal intercalation, during which two r...

متن کامل

Embryonic morphogenesis in Caenorhabditis elegans integrates the activity of LET-502 Rho-binding kinase, MEL-11 myosin phosphatase, DAF-2 insulin receptor and FEM-2 PP2c phosphatase.

let-502 rho-binding kinase and mel-11 myosin phosphatase regulate Caenorhabditis elegans embryonic morphogenesis. Genetic analysis presented here establishes the following modes of let-502 action: (i) loss of only maternal let-502 results in abnormal early cleavages, (ii) loss of both zygotic and maternal let-502 causes elongation defects, and (iii) loss of only zygotic let-502 results in steri...

متن کامل

The apical ECM preserves embryonic integrity and distributes mechanical stress during morphogenesis

Epithelia are bound by both basal and apical extracellular matrices (ECM). Although the composition and function of the former have been intensively investigated, less is known about the latter. The embryonic sheath, the ECM apical to the Caenorhabditis elegans embryonic epidermis, has been suggested to promote elongation of the embryo. In an RNAi screen for the components of the sheath, we ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1902  شماره 

صفحات  -

تاریخ انتشار 2009